
Rice University chemists want to make a point: Nitrogen atoms are for squares.The nitrogens are the point. The squares are the frames that carry them. These molecules are called azetidines, and they can be used as building blocks in drug design.
The Rice lab of chemist László Kürti introduced its azetidines in an Angewandte Chemie paper. The lab's goal is to establish a library of scaffolds for pharmaceutical design through the simple synthesis of a class of molecules that were previously hard to find in nature and very hard to copy.
Azetidines already appear in several drugs and are promising components in the development of treatments for neurological diseases like Parkinson's disease, Tourette's syndrome and attention deficit disorder, according to the researchers.
So there's value in making a fast, inexpensive synthetic route to azetidines with unprotected nitrogen atoms called NH-azetidines -- NH for nitrogen and hydrogen -- that were first found in several kinds of Pacific sea sponges and have more recently been made in arduous laboratory processes.
Rice graduate students Nicole Behnke and Kaitlyn Lovato, lead authors of the paper, quickly learned why there are so few references to synthetic NH-azetidines in the scientific literature.
It required more than 250 experiments for the students to optimize their process, which takes about 24 hours, including product purification. Azetidine molecules come in many configurations, but they all share the square motif, a four-atom "ring" that contains one nitrogen atom and three carbon atoms. This ring is heterocyclic -- that is, it contains at least two different elements.
Kürti noted the square ring is always connected to another ring via one shared carbon atom, a structure called a spiro azetidine. In this way, the two rings are perpendicular to each other, further isolating the highly reactive nitrogen for access by chemists. The nitrogen in the Rice lab's variations were often, though not always, paired with a hydrogen atom "cap" that still allows the nitrogen to react with outside agents.
"Dr. Kürti was inspired by the mechanism of a synthetic process called the Kulinkovich reaction, which is used to make three-membered all-carbon rings, called cyclopropanes, that have the heteroatom (the nitrogen or oxygen) on the outside," Lovato said.
"Once we started looking into making four-membered azetidines, we found that most of them didn't have the NH structures," she said. "The known synthetic methods predominantly yield azetidines in which the ring nitrogen atom is connected to a carbon outside of the ring, but the NH connectivity was hard to access directly. If there's a carbon there, the nitrogen is considered protected, but having the hydrogen there leaves it free to engage in further reactions."
"Once you make this NH heterocycle, you have the flexibility to put whatever you want on the nitrogen," Kürti said. "Or to leave it as it is."
A titanium reagent turned out to be a key middleman in the chemical reaction, allowing it to proceed quickly. "This metal complex mediates the overall transformation, and it's very good because titanium is non-toxic and very abundant," he said.
"It's commercially available and cheap," Behnke said. "If we don't have the titanium added to the flask, the reaction doesn't work."
The Rice team did not patent the process, Kürti said. "The reality is that synthetic organic chemists in academia can contribute a lot to biomedical sciences and pharmaceutical drug discovery when we develop a new mechanism or reaction," he said.
"Biotech and pharmaceutical companies can use the products of these reactions to build structurally diverse compound libraries and quickly test them for biological activities towards different cancer cell lines, pathogens or other important disease biochemical pathways they have assays for," Kürti said. "Once they have access to novel core structures like these spiro azetidines, it's up to medical chemists to decide what diverse functionalities they wish to add on."
Muhammed Yousufuddin, a lecturer of chemistry at the University of North Texas at Dallas, is co-author of the paper. Kürti is an associate professor of chemistry.
Rice University, the National Institutes of Health, the National Science Foundation (NSF), the Robert A. Welch Foundation, the Amgen Young Investigators Award, the Biotage Young Principal Investigator Award and an NSF Graduate Research Fellowship supported the research.
and connect with fellow professionals
At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.
0 Comments
Please log in to post a comment.