
Scientists have developed a pioneering new technique to barcode individual cells more accurately and efficiently -- which could help pave the way for quicker disease diagnosis. A team of researchers from the Living Systems Institute at the University of Exeter has created a new method, that combines artificial intelligence with microfluidics, that can easily classify, sort and count individual cells.
The ground-breaking new technique allows scientists to carry out intricate and in-depth analysis of single cells, including mammalian cells, in real-time.
Previously, there have been no general methods to accurately sample and barcode isolated single cells without large wastage during the sampling process.
This new approach, however, allows scientists to barcode individual cells much more accurately and efficiently than before to quantify their molecular make-up -- a crucial development as disease often comes from the malfunction of a few cells.
The new technique could revolutionise the crucial early diagnosis of some of the most debilitating and life-threatening diseases, including cancer.
The study is published in the journal Advanced Materials Technologies.
Dr. Fabrice Gielen, principal investigator of the research group from the Living Systems Institute said: "With the technology we have developed, we have the opportunity to advance our understanding of the origin of differences observed between cells in a population.
"These differences are seen at the molecular level and are especially large during key cell stages such as differentiation into specialised cells, but can also be indicative of early cancer development.
"We have applied our tool for screening of thousands of single cells from real-time imaging data and efficiently barcode them with minimum cell waste.
"We are currently applying this tool to screen miniature in-vitro tumours formed from model neuroblastoma cells to understand why cancer progression appears to be highly unpredictable in clinical settings. This may lead to early diagnostics and the use of targeted therapeutics.
"Our technique being generic in scope, we also foresee plenty of further opportunities enabled by real-time image analyses such as the study of bacterial biofilm formation and the degradation of plastic microfibers by biocatalysts."
and connect with fellow professionals
At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.
0 Comments
Please log in to post a comment.