NIH

PARP Inhibitor May Be Effective Against Some TNBC Lacking BRCA Mutations

ArticlePress release
Current Medical News
Contributed byMaulik P. Purohit MD MPHNov 02, 2017

The investigational PARP inhibitor talazoparib caused regression of patient-derived xenografts (PDXs) of triple-negative breast cancers (TNBC) that had BRCA mutations and also those that did not have BRCA mutations but had other alterations in DNA damage-repair pathways. This research is outlined in a report published in Clinical Cancer Research, a journal of the American Association for Cancer Research. The lead author is Funda Meric-Bernstam, MD, chair of the Department of Investigational Cancer Therapeutics, medical director of the Institute for Personalized Cancer Therapy, and Nellie B. Connally Chair in Breast Cancer Research at The University of Texas MD Anderson Cancer Center in Houston.

"Patients with triple-negative breast cancer who do not respond to neoadjuvant [preoperative] chemotherapy have a decreased chance of long-term survival, and there is a great need for new treatment options," said Meric-Bernstam. "Developing animal models that are well characterized gives us an opportunity to test new agents and better understand how to best treat these patients." Because PDXs are tumor models derived directly from patient tumors and grown in mice, they may better reflect the complexity of human tumors than traditional models, she explained. "Ultimately, we would like to better deliver personalized cancer therapy by understanding how we can best match therapies to patients," she said.

The researchers developed 26 PDXs using tumors from 25 patients, of which 24 were TNBC; 22 PDXs were derived from residual tumors after neoadjuvant chemotherapy. Their research showed that the PDX models varied significantly in their responsiveness to different standard-of-care chemotherapies as well as targeted therapies in development.

"The PDX models we generated varied dramatically in their genomic characteristics, potentially giving insight into why it has been challenging to truly personalize cancer therapy," Meric-Bernstam noted.

Based on data obtained by sequencing the tumor exomes, the researchers tested several investigational agents: the pan-PI3K inhibitor buparlisib against seven PDXs, the mTOR inhibitor TAK228 against eight PDXs, the MEK1/2 inhibitor trametinib against eight PDXs, and the PARP1/2 inhibitor talazoparib against 13 PDXs. They found that buparlisib, trametinib, and TAK228 had growth inhibitory effects, but they did not cause regression of any of the PDXs against which they were tested.

"Among targeted therapies, the efficacy of PARP inhibitors was most striking," noted Meric-Bernstam. Of the PDXs treated with talazoparib, five regressed and one showed stable disease for at least 28 days. Four of these five PDXs did not harbor germline BRCA1/2 mutations, but had alterations in other DNA repair pathways, including ATM deletion and other alterations in BRCA2.

The team is developing new PDX models of TNBC to better determine which models are sensitive to PARP inhibitors and to get a more comprehensive picture of the determinants of PARP inhibitor sensitivity. They are also conducting an investigator-initiated clinical trial to test whether talazoparib is efficacious in other tumor types with DNA damage repair alterations beyond germline BRCA mutations.

The U.S. Food and Drug Administration has approved three PARP inhibitors so far, olaparib (Lynparza) and rucaparib (Rubraca) to treat certain women who have ovarian cancer with BRCA gene mutations, and niraparib (Zejula) to treat both BRCA mutation-positive and BRCA mutation-negative ovarian cancers.

"Our studies show that PARP inhibitors may have efficacy in selected patients outside of germline BRCA mutation, potentially those with other alterations in DNA damage repair genes," Meric-Bernstam said.

A limitation of the study is that the researchers used a limited number of PDX models and the findings need to be validated in a larger panel of PDXs, Meric-Bernstam said.


Materials provided by American Association for Cancer ResearchNote: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

Kurt W. Evans, Erkan Yuca, Argun Akcakanat, Stephen M. Scott, Natalia Paez Arango, Xiaofeng Zheng, Ken Chen, Coya Tapia, Emily Tarco, Agda K. Eterovic, Dalliah M. Black, Jennifer K. Litton, Timothy A. Yap, Debu Tripathy, Gordon B. Mills, Funda Meric-Bernstam. (2017). A Population of Heterogeneous Breast Cancer Patient-Derived Xenografts Demonstrate Broad Activity of PARP Inhibitor in BRCA1/2 Wild-Type TumorsClinical Cancer Research. DOI: 10.1158/1078-0432.CCR-17-0615

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!