New Resistance-Busting Antibiotic Combination Could Extend The Use Of 'Last-Resort' Antibiotics

New Resistance-Busting Antibiotic Combination Could Extend The Use Of 'Last-Resort' Antibiotics

ArticlePress release
Current Medical News
Contributed byLester Fahrner, MDDec 21, 2021

Scientists have discovered a new potential treatment that has the ability to reverse antibiotic resistance in bacteria that cause conditions such as sepsis, pneumonia, and urinary tract infections.Carbapenems, such as meropenem, are a group of vital often ‘last-resort’ antibiotics used to treat serious, multi-drug resistant infections when other antibiotics, such as penicillin, have failed. But some bacteria have found a way to survive treatment with carbapenems, by producing enzymes called metallo-beta-lactamases (MBLs) that break down the carbapenem antibiotics, stopping them from working.

Highly collaborative research, conducted by scientists from the Ineos Oxford Institute (IOI) for Antimicrobial Research at the University of Oxford and several institutions across Europe, found that the new class of enzyme blockers, called indole carboxylates, can stop MBL resistance enzymes working leaving the antibiotic free to attack and kill bacteria such as E. coli in the lab and in infections in mice.

The new research, published today (Monday) in Nature Chemistry, was funded by the Innovative Medicines Initiative (IMI) through the European Lead Factory (ELF) and the European Gram-Negative Antibacterial Engine (ENABLE) programmes.

The researchers first screened hundreds of thousands of chemicals to see which would attach tightly to MBLs to stop them working, and which didn’t react with any human proteins, leading to the discovery of the indole carboxylates as promising new candidates. Using a process called crystallography to zoom in to take a closer look at how they work, the researchers found these potential drugs attach to MBLs in a completely different way to any other drugs – they imitate the interaction of the antibiotic with the MBLs. This clever Trojan Horse trick allows these potential drugs to be highly effective against a very wide range of MBL-producing superbugs.

After their initial discovery, the researchers chemically changed aspects of the drugs to make them as effective as possible, and tested them in combination with carbapenems against multi-drug resistant bacteria in both dishes in the lab and in mice. The potential new drugs in combination with carbapenems were found to be 5 times more potent at treating severe bacterial infections than carbapenems alone, and at a less concentrated dose. Importantly, these potential drugs show only mild side effects in mice.

Carbapenems work in a similar way to penicillin and other related antibiotics called beta-lactams – they stop bacteria from forming new cell walls when they try to grow and multiply, which kills the bacteria. Carbapenems are more stable than other similar antibiotics, and many of the methods bacteria employ to resist antibiotics don’t work on carbapenems.

However, resistance arose to carbapenems through, for example, genes that code for MBLs, which can quickly pass from bacteria to bacteria. There is no licensed drug that targets MBLs, and only one in clinical trials – so there is an urgent need to find new drugs that overcome resistance, protect carbapenems and keep these precious medicines working for longer.

The World Health Organisation (WHO) estimates that by 2050, 10 million deaths will be due annually to antimicrobial resistance, overtaking the number of cancer related deaths – making it one of the most pressing health problems faced by humanity today.

Professor Christopher Schofield, Academic Lead (Chemistry), Ineos Oxford Institute at the University of Oxford, said:

“An increase in antimicrobial resistance is absolutely inevitable. It a massive problem because collectively we haven’t been making enough new clinically useful antibiotics. As a society we must find ways both to make new antibiotics and protect the ones we have. The alternative is that routine modern medicine will be disrupted in a manner simply too horrendous to conceive.

“The collaborative efforts of academics and industry scientists have discovered a brand new class of drug that can shut down one of the ways bacteria fight back against antibiotics. This research is the culmination of years of work, from screening huge libraries of chemicals, through to testing the best drug candidates in pre-clinical studies in the lab. We are actively progressing this new drug type towards clinical trials in people, most importantly in lower and middle income countries where resistance to carbapenem antibiotics is widespread.”

Professor Tim Walsh, Academic Lead (Biology), Ineos Oxford Institute at the University of Oxford, said:

“Academia, given the space to create, can produce something amazing – and that’s what we have seen here. With the fantastic support we have received from INEOS, we can replicate this type of drug discovery programme within the IOI for multiple different bacterial targets and applications.

“As well as drugs that overcome resistance to current antibiotics, in the IOI we wish to discover entirely new types of antibiotics – not only to fight bacteria that cause infections in humans, but in bacteria that affect farm animals. These animals, such as chickens and pigs, are a source of human antimicrobial resistance, so we’re looking to develop drugs to use exclusively in agriculture and help protect against multidrug resistant infections.”

Was this article helpful

On the Article

Lester Fahrner, MD picture
Approved by

Lester Fahrner, MD

Chief Medical Officer, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!