Image courtesy of Celine Mateo

Mystery Of Oxygenation Connections In The Brain Now Solved

ArticlePress release
Brain & Nerve
Current Medical News
Contributed byKrish Tangella MD, MBAOct 29, 2017

Scientists have known that areas of the brain with similar functions -- even those in different brain hemispheres -- connect to share signals when the body rests, but they haven't known how this "resting-state connectivity" occurs. Now, scientists in the Neurophysics Laboratory at the University of California San Diego may have the answer. Using an advanced form of optical microscopy designed by David Kleinfeld and Philbert Tsai in the UC San Diego Department of Physics, postdoctoral fellow Celine Mateo and colleagues studied tiny changes in the diameter of brain blood vessels across the entire cortex of a mouse. Their findings, published in the Oct. 26 issue of the journal Neuron, revealed a cascade of interactions that explains how oxygen levels correlate over large distances in the brain, as detected by fMRI -- the major tool used by neuroscientists and psychologists to study the involvement of different brain areas in human behavior. The scientists say their results have immediate impact on human health and medicine applications, including higher resolution imaging methods to study connections within the brain.

"One impact of our results is to use MRI and directly study fluctuations in the diameter of blood vessels across the brain," said Kleinfeld, a distinguished professor in the Divisions of Biological Sciences and Physical Sciences, noting a project already underway with colleagues at Massachusetts General Hospital.

During their study of brain interactions, UC San Diego researchers observed the slow variation in amplitude of high frequency electrical signals in the resting brain normally associated with attention span. This slow variation -- periods of 10 seconds -- in electrical signal amplitude corresponds with slow vibrations in the muscles surrounding arterioles in the brain. The muscles then contract and relax rhythmically, changing the diameter of the arterioles and modulating the oxygen levels in neighboring brain tissue. This effect is particularly notable when it occurs between brain regions across the two cortical hemispheres. When the research team repeated these measurements in mice that lacked anatomical connections between brain hemispheres, however, the synchronization decreased.

Mateo explained that the research furthers the understanding of how blood vessels dynamically help the brain maintain its homeostasis -- the tendency of the body to seek and maintain a condition of balance within its internal environment.

"Our next question is to ask how blood vessels participate on the regenerative effect of sleep," said Mateo. "We hope that applying our arsenal of optical and genetically engineered tools will advance our understanding of this fascinating subject."

Only in the past 25 years have scientists discovered that changes in the magnetic properties of hemoglobin -- a protein of red blood cells that contains iron and carries oxygen -- can be used as a surrogate to measure brain activity. The resulting technique, called BOLD fMRI, became the standard means by which researchers have measured what parts of the brain are activated during different mental activities.


Materials provided by University of California - San Diego. Original written by Mario Aguilera and Cynthia Dillon. Note: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

Celine Mateo, Per M. Knutsen, Philbert S. Tsai, Andy Y. Shih, David Kleinfeld. (2017). Entrainment of Arteriole Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent “Resting-State” ConnectivityNeuron. DOI: 10.1016/j.neuron.2017.10.012

Was this article helpful

On the Article

Krish Tangella MD, MBA picture
Approved by

Krish Tangella MD, MBA

Pathology, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!