Image by stanias from Pixabay

Lighting The Way To Noninvasive Blood Glucose Monitoring Using Portable Devices

ArticlePress release
Health & Wellness
Current Medical News
+1
Contributed byKrish Tangella MD, MBAAug 18, 2024

Diabetes is a very prevalent disease that, unfortunately, still has no treatment. People with diabetes need to monitor their blood glucose levels (BGLs) regularly and administer insulin to keep them in check. In almost all cases, BGL measurements involve drawing blood from a fingertip through a finger prick. Since this procedure is painful, less invasive alternatives that leverage modern electronics are being actively researched worldwide.

Thus far, several methods to measure BGL have been proposed; using infrared light is a prominent example, and mid-infrared light-based devices have shown reasonable performance. However, the required sources, detectors, and optical components are costly and difficult to integrate into portable devices. Near-infrared light (NIR), in contrast, can be readily produced and detected using inexpensive components. Many smartphones and smartwatches already use NIR sensors to measure heart rate and blood oxygen levels. Unfortunately, glucose does not have unique absorption peaks in the NIR region, and it is therefore difficult to distinguish it from other chemicals in the blood, such as lipids and proteins.

To tackle this limitation, a research team led by Tomoya Nakazawa of Hamamatsu Photonics (Japan) recently developed a novel methodology to estimate BGLs from NIR measurements. Their work, which could revolutionize noninvasive blood glucose monitoring, was published in the Journal of Biomedical Optics.

The core contribution of this study is a new blood glucose level index that the research team derived from basic NIR formulas. Their approach begins with the extraction of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) signals from NIR measurements. Through the analysis of massive amounts of data on NIR measurements, the researchers realized that the phase delay (asynchronicity) between the oscillating components of the HbO2 and Hb signals is closely related to the degree of oxygen consumption during each cardiac cycle, thereby serving as a gauge for metabolism. “This phase delay-based metabolic index, which has not been reported by other researchers, is a scientifically important discovery,” remarks Nakazawa.

The team then sought to prove the relationship between this newfound metabolic index and BGLs through a series of experiments. First, they used the NIR sensor on a commercial smartwatch by placing it over the finger of a healthy subject at rest. The subject then consumed different sugary and sugar-free beverages to induce changes in blood glucose. Similar experiments were conducted using a custom smartphone holder with a high-brightness LED. The results were very promising, as the changes in the metabolic index closely matched variations in blood glucose levels measured by a commercial continuous glucose monitor. This confirms that the phase delay between the HbO2 and Hb is indeed closely correlated with BGLs.

Clinical tests on diabetic individuals are pending to confirm the applicability of the metabolic index in a real-world context. Still, the researchers have high hopes for their innovative technique, as Mr. Nakazawa states: “The proposed method can in principle be implemented in existing smart devices with a pulse oximetry function and is inexpensive, battery-saving, and simple compared with other noninvasive blood glucose monitoring techniques. Thus, our approach could be a powerful tool towards portable and accessible BGL monitoring devices in the future.”

Let us hope these efforts contribute to practical, noninvasive ways for people with diabetes to keep their BGLs under control, thereby minimizing the impact of their disease!  

  For details, see the original Gold Open Access article by Nakazawa et al., “Non-invasive blood glucose estimation method based on the phase delay between oxy- and deoxyhemoglobin using visible and near-infrared spectroscopy,” J. Biomed. Opt. 29(3), 037001 (2024), doi 10.1117/1.JBO.29.3.037001.

JOURNAL

Journal of Biomedical Optics

DOI

10.1117/1.JBO.29.3.037001

ARTICLE TITLE

Non-invasive blood glucose estimation method based on the phase delay between oxy- and deoxyhemoglobin using visible and near-infrared spectroscopy

ARTICLE PUBLICATION DATE

5-Mar-2024

Was this article helpful

On the Article

Krish Tangella MD, MBA picture
Approved by

Krish Tangella MD, MBA

Pathology, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!