Blausen.com staff. "Blausen gallery 2014

Key To The Development Of Fundamental Treatment Methods For Parkinson’s Disease

Article
Brain & Nerve
Current Medical News
Contributed byMaulik P. Purohit MD MPHJan 30, 2016

Lewy bodies had been considered to be a key element of pathogenesis for Parkinson's disease. Although structural analysis for Lewy bodies with an electron microscope had been performed, it had no secondary structural information of proteins, which is important for the development of drugs. A research group led by Osaka University succeeded in elucidating the secondary structure of Lewy bodies in the brain of Parkinson's disease patients for the first time with synchrotron Fourier transform infrared micro-spectroscopy.

A group of researchers at Osaka University in cooperation with the Japan Synchrotron Radiation Research Institute (JASRI), succeeded in elucidating the secondary structure of Lewy bodies in the brain of Parkinson's disease patients for the first time with synchrotron Fourier transform infrared micro-spectroscopy (FTIRM).

Lewy bodies had been considered to be a key element of pathogenesis for Parkinson's disease. Although structural analysis for Lewy bodies with an electron microscope had been performed, it had no secondary structural information of proteins, which is important for the development of drugs.

In recent years, many researchers have focused on new treatment to inhibit the formation of abnormal protein aggregates, which can delay the onset and progression of Parkinson's disease. The results and methods of this research may provide important clues to the development of epoch-making treatment for Parkinson's disease.

Parkinson's disease is the most common progressive neurodegenerative disorder after Alzheimer's disease, and there is no basic treatment to control the development of the disease. It had been known for quite some time that Lewy bodies, abnormal protein aggregates, are formed in the brain of Parkinson's disease patients, and it is thought that Lewy bodies play an important role in the onset of the disease. However, the structural analysis of Lewy bodies has made no progress other than observation with an electronic microscope in the last 20 years. Information on proteins required for developing treatment drugs has been unavailable from electron microscopic observation.

A group of researchers led by Hideki Mochizuki, Professor and Katsuya Araki, Clinical Fellow at the Department of Neurology, Graduate School of Medicine, Osaka University, in cooperation with Dr. Naoto Yagi, JASRI, analyzed proteins by synchrotron Fourier transform infrared micro-spectroscopy with the infrared beamline BL43IR at the SPring-8 synchrotron radiation facility and succeeded in obtaining structural information which had not been obtained from the electronic microscopy.

In experiments by this group, it was necessary to make measurements while irradiating infrared beams of a few micrometers in diameter on a Lewy body of with a 10 micrometer diameter. For that purpose, radiation light at the SPring-8, the brightest in the world, played a great role.

The experiment showed that Lewy bodies in the brain of Parkinson's disease patients had many β sheet structures*1. This supports the validity of in-vitro studies in the past. It was also found that the rate of β sheet structures was higher in the halo of a Lewy body than in the core of a Lewy body and the core was lipid-rich. These findings will lead to the elucidation of the mystery of the formation of Lewy bodies.

This research was featured in the electronic version of Scientific Reports on Tuesday, December 1, 2015.

*1 β sheet structure

The β sheet structure is one of the typical secondary structures of proteins and has a stable plane structure due to hydrogen bonding between a stretch of polypeptide chain and either parallel or antiparallel extended polypeptide chains. Another typical secondary structure is α-helix, a spiral conformation.



The above post is reprinted from materials provided by Osaka University.Note: Materials may be edited for content and length.

Disclaimer: DoveMed is not responsible for the adapted accuracy of news releases posted to DoveMed by contributing universities and institutions.

Primary Resource:

Araki, K., Yagi, N., Ikemoto, Y., Yagi, H., Choong, C. J., Hayakawa, H., ... & Nagai, Y. (2015). Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson’s disease patients.Scientific reports5.

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!