Anatomy & Physiology, Connexions Web site.

How We Know When To Empty Our Bladders

Article
Kidney & Bladder Health
Health & Wellness
+1
Contributed byMaulik P. Purohit MD MPHApr 04, 2016

Researchers at the University of Vermont College of Medicine have made a discovery that helps explain how we know when to empty our bladders and may lead to new therapeutic interventions for bladder dysfunction.

Sensing bladder fullness is seemingly simple. The kidneys send waste and excess water to the bladder, and upon reaching its filling threshold, the bladder tells the central nervous system that it's time to void. However, a team led by Mark T. Nelson, PhD, University Distinguished Professor and Chair of the Department of Pharmacology, found that in addition to filling pressure, the process involves what they call "non-voiding transient contractions (TCs)" of the urinary bladder smooth muscle. The study, "Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling," by Thomas J. Heppner et al., appears in the April issue of The Journal of General Physiology.

TCs have a central role in sensing pressure and conveying this information to afferent (sensory) nerves, the researchers note. But not only do TCs provide information about when the bladder is full, they alert us when conditions are ripe for the most efficient voiding experience. This, they conclude, means that TCs could represent a novel target for therapeutic intervention in urinary bladder dysfunction. "The presence or absence of these contractions, and how fast the contractions happen, can contribute to bladder under-activity or over-activity -- which are both bad," Dr. Nelson said.

Using an ex vivo mouse bladder preparation, Nelson and his colleagues, Drs. Nathan Tykocki, Tom Heppner and David Hill-Eubanks explored the relative contributions of filling pressure and TC-induced pressure transients to sensory nerve stimulation. They observed that, for a given increase in pressure, TCs evoked an ∼10-fold greater increase in sensory nerve activity than did the same increase in filling pressure. They concluded that TCs are responsible for a predominant share of bladder sensory output at normal bladder pressures.

Although filling pressure did not affect the frequency of TCs, it did increase the rate at which they reached their maximum pressure (rate of rise). This latter property reflects a change in the length-tension relationship of detrusor smooth muscle, an important biophysical property that determines how efficiently the muscle will contract. "This meant that the rate of rise of the TC tells the brain not only how full the bladder is, but also if the bladder muscle can contract sufficiently for normal voiding," Dr. Nelson said. In addition to this, they found that inhibiting either small- or large-conductance calcium-activated potassium (SK and BK) channels -- both of which are important in helping smooth muscle relax -- increased TC amplitude and sensory nerve activity.

"We have known for years that BK channels in urinary bladder smooth muscle cells help determine excitability," Dr. Nelson said. "The more the channels are on, the less excitable the bladder smooth muscle becomes, the fewer of these transient contractions you have … But if we block SK channels, we get a much bigger burst of sensory nerve outflow. It looks like SK channels are in an interstitial cell type that is involved in sensing this small, but rapid, change in pressure."

The next step, the researchers note, is looking at the mechanism that determines the frequency and rate of rise of TCs. "Transient contractions seem to vary from bladder to bladder," Dr. Nelson said. "At least in our experiments, the frequency is set for that animal or person. It seems like it is fine-tuned, so that you get the optimal response. Our data suggest that other cell types -- non-muscle cell types, non-nerve cell types -- are playing a role."



The above post is reprinted from materials provided by The Rockefeller University PressNote: Materials may be edited for content and length.

Disclaimer: DoveMed is not responsible for the adapted accuracy of news releases posted to DoveMed by contributing universities and institutions.

Primary Resource:

Heppner, T. J., Tykocki, N. R., Hill-Eubanks, D., & Nelson, M. T. (2016). Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling. The Journal of general physiology,147(4), 323-335.

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!