×

Please Remove Adblock
Adverts are the main source of Revenue for DoveMed. Please remove adblock to help us create the best medical content found on the Internet.

Molecular Testing for Ocular Albinism

Last updated April 27, 2017


What are other Names for this Test? (Equivalent Terms)

  • Gene Mutation Analysis for Ocular Albinism
  • Molecular Testing for OA
  • Test for Molecular Diagnosis of Ocular Albinism

What is Molecular Testing for Ocular Albinism? (Background Information)

  • Molecular Testing for Ocular Albinism is a genetic test that is helpful in aiding a diagnosis of ocular albinism. The lab test results may also be subsequently useful in taking appropriate treatment decisions
  • Ocular albinism (OA) is a rare genetic disorder, characterized by the partial or complete absence of the pigment melanin, in the eyes of the affected individuals. The reduced or absent melanin in the eyes affects vision in those with OA
  • Ocular albinism type 1 is the most common form of the disorder. OA is predominantly reported in males, since it follows an X-linked inheritance pattern
  • Loss of pigmentation in the eyes, sensitivity to light, and reduced vision acuity are some common symptoms of the condition

Ocular albinism is caused by mutations in the G protein-coupled receptor 143 or GPR143 gene.

  • The GPR143 gene codes for a protein in the retina and skin cells. This protein plays a crucial role in the development of pigmentation in the eyes, by regulating the formation of melanosomes. These structures are the sites of melanin synthesis and storage
  • The disorder is inherited in an X-linked pattern. In this type of inheritance, the defective gene is carried on the X chromosome. Females have two X chromosomes, and the unaffected gene copy masks the effects of a defective gene copy. However, since males have only one X chromosome inherited from their mother, the defective gene is expressed in them, causing the disorder

A positive or negative test result should always be interpreted in the context of the individual’s overall signs and symptoms.

Molecular testing, in general, can be performed using a variety of methods. Some of these methods include:

  • In situ hybridization techniques, such as fluorescence in situ hybridization (FISH)
  • Immunohistochemistry (IHC)
  • Next-generation sequencing (NGS)
  • Methylation profiling
  • Polymerase chain reaction (PCR)
  • Comparative genomic hybridization (CGH)
  • Karyotyping including spectral karyotyping
  • mRNA analysis
  • Tissue microarrays (TMAs)
  • Southern blot test
  • Northern blot test
  • Western blot test
  • Eastern blot test

The methodology used for ocular albinism may vary from one laboratory to another.

Note: Molecular testing has limitations depending on the method being used, and genetic mutational abnormalities being tested. This can affect the results on a case-by-case basis. Consultation with your healthcare provider will help in determining the right test and right molecular method, based on individual circumstances.

What are the Clinical Indications for performing the Molecular Testing for Ocular Albinism?

Molecular Testing for Ocular Albinism may be undertaken in the following situations: 

  • To assist (and in some cases, confirm) the initial diagnosis of OA
  • To check for or ascertain a family history of OA
  • To distinguish other conditions that have similar features (signs and symptoms)
  • To help determine treatment options

How is the Specimen Collected for Molecular Testing for Ocular Albinism?

The type and source and specimen sample requirements will depend on the preference of the individuals and the preference of the testing lab. Thus, it may vary from one individual to another and from one lab to another. Therefore, it is important to contact the testing lab for exact specimen requirements, before initiating the collecting and testing process.

Following is the specimen collection process for Molecular Testing for Ocular Albinism:

  • Sample on which the test is performed may include:
    • Peripheral blood in individuals showing signs and symptoms suspected of OA
    • Bone marrow biopsy specimen
    • For mitochondrial DNA testing, usually a muscle biopsy or a liver biopsy is preferred
    • In case of expectant mothers, prenatal testing through amniotic fluid and chorionic villi sampling
    • Fetal cord blood
    • Fresh tissue from biopsy
    • Fresh tissue from autopsy sample
    • Fresh tissue from fetal demise
    • Buccal brushes: Using the kit that is provided by the testing laboratory, buccal brushes can be used to collect the specimen, by scraping the inner cheek lining (buccal mucosa)
    • Oral rinse specimens
    • Body fluids such as saliva, tears, and semen
    • Dried blood spots: This specimen type is usually requested in situations where the collection and/or shipping of whole blood is not practical
    • In some cases, hair samples (with attached roots), finger nails, and buccal swabs, may be acceptable
    • Products of conception sample from aborted pregnancy
  • Process of obtaining the sample: As outlined by the laboratory testing facility
  • Preparation required: As outlined by the laboratory testing facility

Important Information:

Limitations of specimen while testing for ocular albinism

  • For blood specimens: Individuals, who have received platelet transfusions, red blood transfusion, or white blood (leukocyte) transfusion, should wait at least 4 weeks before providing a blood specimen
  • The following specimens may not be acceptable in individuals who have received heterologous bone marrow transplant (in the past):
    • Peripheral blood samples
    • Oral rinse specimens
    • Bone marrow biopsy specimens
  • Testing for ocular albinism should not be performed on a transplanted organ/specimen, since the genetic material belongs to the donor and not to the individual being tested
  • In some cases, a different source of specimen may be acceptable to the laboratory performing the test

Occasionally, additional samples may be required to either repeat the test or to perform follow-up testing.

Turnaround time for test results

  • Depending on the location of testing, it may take from 2 to 8 weeks from the time of sample collection, to obtain the test results

Sample storage information

  • Many hospitals preserve the paraffin blocks for at least 7 years. In general, older paraffin blocks (over 5 years) may affect the detection of specific mutations, due to degradation of the tissue specimen over time 

Cost of Molecular Testing for Ocular Albinism:

  • The cost of the test procedure depends on a variety of factors, such as the type of your health insurance, annual deductibles, co-pay requirements, whether your healthcare provider/facility is in-network or out-of-network of your insurance company
  • In many cases, an estimate may be provided before the test is conducted. The final amount may depend upon the findings during the test procedure and post-operative care, if required

What is the Significance of the Molecular Testing for Ocular Albinism Result?

The significance of Molecular Testing for Ocular Albinism is explained below:

  • A positive test result helps aid, and in some cases, confirm the diagnosis of OA
  • The test results can help in the following manner:
    • Exclude other conditions presenting similar signs and symptoms
    • Determine the prognosis of the patient
    • In management of the condition following birth of the child, if the condition is diagnosed prenatally
    • In making treatment decisions
  • Individuals showing a positive test result during pregnancy may benefit from genetic counseling
  • If a causative gene mutation for ocular albinism is identified in a family, then genetic counseling may be recommended to help assess the risk, before planning for a child

The laboratory test results are NOT to be interpreted as results of a "stand-alone" test. The test results have to be interpreted after correlating with suitable clinical findings and additional supplemental tests/information. Your healthcare providers will explain the meaning of your tests results, based on the overall clinical scenario.

Additional and Relevant Useful Information:

  • Many laboratories may not have the capability to perform this test. Only highly-specialized labs with advanced facilities and testing procedures may offer this test
  • Ongoing research may discover additional gene mutations for this condition. This may further contribute towards diagnosis and treatment. Please consult with your healthcare provider for updates
  • Ocular albinism is also known as, or is closely-related to the medical condition ocular albinism type 1, x-linked ocular albinism (XLOA) and Nettleship-Falls ocular albinism

Certain medications may influence the outcome of the test. Hence, it is important to inform your healthcare provider of the complete list of medications (including any herbal supplements) you are currently taking. This will help the healthcare provider interpret your test results more accurately and avoid any possibility of a misdiagnosis.

What are some Useful Resources for Additional Information?

Please visit our Laboratory Procedures Center for more physician-approved health information:

http://www.dovemed.com/common-procedures/procedures-laboratory/

References and Information Sources used for the Article:

https://ghr.nlm.nih.gov/primer/testing/genetictesting (accessed on 04/18/2017) 

https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5806a1.htm (accessed on 04/17/2017)

http://www.nature.com/gim/journal/v10/n5/full/gim200852a.html (accessed on 04/18/2017)

http://pediatrics.aappublications.org/content/106/6/1494 (accessed on 04/18/2017)

https://www.ncbi.nlm.nih.gov/books/NBK1343/ (accessed on 04/18/2017)

http://www.orpha.net/consor/cgi-bin/ClinicalLabs_Search.php?lng=EN&data_id=59655&search=ClinicalLabs_Search_Simple&data_type=Test&title=Molecular-diagnosis-of-Ocular-albinism-X-linked--GPR143-gene-&MISSING%20CONTENT=Molecular-diagnosis-of-Ocular-albinism-X-linked--GPR143-gene- (accessed on 04/18/2017)

Helpful Peer-Reviewed Medical Articles:

Carrano, A. V., et al. Measurement and purification of human chromosomes by flow cytometry and sorting. Proceedings of the National Academy of Sciences 76, 1382–1384 (1979)

Drets, M. E., & Shaw, M. W. Specific banding patterns of human chromosomes. Proceedings of the National Academy of Sciences 68, 2073–2077 (1971)

Druker, B. J. Perspectives on the development of a molecularly targeted agent. Cancer Cell 1, 31–36 (2002)

Parra, I., & Windle, B. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Genetics 5, 17–21 (1993) doi:10.1038/ng0993-17

Pinkel, D., et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics 20, 207–211 (1998) doi:10.1038/2524

Speicher, M. R., et al. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genetics 12, 368–375 (1996) doi:10.1038/ng0496-368

Mauri, L., Manfredini, E., Del Longo, A., Veniani, E., Scarcello, M., Terrana, R., ... & Marsico, G. (2017). Clinical evaluation and molecular screening of a large consecutive series of albino patients. Journal of Human Genetics, 62, 277-290.

Hegde, M., Lewis, R. A., & Richards, C. S. (2002). Diagnostic DNA testing for X-linked ocular albinism (OA1) with a hierarchical mutation screening protocol. Genetic testing, 6(1), 7-14.

Zou, X., Li, H., Yang, L., Sun, Z., Yuan, Z., Li, H., & Sui, R. (2017). Molecular genetic and clinical evaluation of three Chinese families with X-linked ocular albinism. Scientific Reports, 7, 33713. http://doi.org/10.1038/srep33713

Khordadpoor-Deilamani, F., Akbari, M. T., Karimipoor, M., & Javadi, G. (2015). Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations. Molecular vision, 21, 730.

Reviewed and Approved by a member of the DoveMed Editorial Board
First uploaded: April 27, 2017
Last updated: April 27, 2017