Watching The Brain Do Math

Watching The Brain Do Math

Article
Brain & Nerve
Behavioral & Mental Health
+2
Contributed byKrish Tangella MD, MBAAug 08, 2016

A new Carnegie Mellon University neuroimaging study reveals the mental stages people go through as they are solving challenging math problems.

Published in Psychological Science, researchers combined two analytical strategies to use functional MRI (fMRI) to identify patterns of brain activity that aligned with four distinct stages of problem solving.

"How students were solving these kinds of problems was a total mystery to us until we applied these techniques," said John Anderson, the R.K. Mellon University Professor of Psychology and Computer Science and lead researcher on the study. "Now, when students are sitting there thinking hard, we can tell what they are thinking each second."

Anderson has spent decades revolutionizing education and how students learn by developing a unified theory of cognition and using it to create successful cognitive-based tutors. He believes that insights from this new work may eventually be applied to the design of more effective classroom instruction -- particularly in the form of improving cognitive tutors by creating models that match the brain activation and thinking patterns used to solve these problems.

Anderson's work at the intersection of cognitive psychology and computer science to find better ways for students to learn is a major reason that Carnegie Mellon has been a longtime leader in the study of brain and behavior and in educational research. His legacy is a critical part of the foundation of two university-wide initiatives: BrainHub, which focuses on how the structure and activity of the brain give rise to complex behaviors; and the Simon Initiative, which aims to measurably improve student learning outcomes by harnessing a learning engineering ecosystem that has developed over several decades at CMU.

His latest study emerges from an ongoing line of research that uses brain imaging to understand the sequence of processes that underlie thinking. While neuroimaging research has provided a window into various aspects of cognition, how these pieces fit together into a coherent whole, as people complete real tasks in real time, is not clearly understood.

Anderson wondered whether two analytical approaches -- multivoxel pattern analysis (MVPA) and hidden semi-Markov models (HSMM) -- could be combined to shed light on the different stages of thinking. MVPA has typically been used to identify momentary patterns of activation; adding HSMM, Anderson hypothesized, would yield information about how these patterns play out over time.

Anderson and CMU Department of Psychology colleagues Aryn A. Pike and Jon M. Fincham decided to apply this combined approach to neuroimaging data collected from participants as they solved specific types of math problems. To gauge whether the stages that were identified mapped on to actual stages of thinking, they manipulated different features of the math problems; some problems required more effort in coming up with an appropriate solution plan and others required more effort in executing the solution. The aim was to test whether these manipulations had the specific effects one would expect on the durations of the different stages.

Eighty people participated in the study -- after practicing using specific strategies to solve the math problems, the participants then answered a series of target problems while in the scanner. They received feedback for each problem, with answers turning green if they were correct and red if they were incorrect.

Using the HSMM-MVPA method to analyze the neuroimaging data, the team identified four stages of cognition: encoding, planning, solving, and responding. The results showed that the planning stage tended to be longer when the problem required more planning, and the solution stage tended to be longer when the solution was more difficult to execute, indicating that the method mapped onto real stages of cognition that were differentially affected by various features of the problems.

"Typically, researchers have looked at the total time to complete a task as evidence of the stages involved in performing that task and how they are related," Anderson said. "The methods in this paper allow us to measure the stages directly."

Although the study focused specifically on mathematical problem solving, the method holds promise for broader application, the researchers argue. Using the same method with brain imaging techniques that have greater temporal resolution, such as EEG, could reveal even more detailed information about the various stages of cognitive processing.


The above post is reprinted from materials provided by Carnegie Mellon University. The original item was written by Shilo Rea. Note: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the adapted accuracy of news releases posted to DoveMed by contributing universities and institutions.

Primary Resource:

Anderson, J. R., Pyke, A., Fincham, J. M., & Anderson, J. R. Hidden Stages of Cognition Revealed in Patterns of Brain Activation.

Was this article helpful

On the Article

Krish Tangella MD, MBA picture
Approved by

Krish Tangella MD, MBA

Pathology, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!