×

Please Remove Adblock
Adverts are the main source of Revenue for DoveMed. Please remove adblock to help us create the best medical content found on the Internet.

Resistance Mechanism Of Aggressive Brain Tumors Revealed

Last updated June 11, 2016

Approved by: Maulik P. Purohit MD MPH

DoveMed.com

Further investigation revealed that GMB recurrence correlated with elevated activity of a tumor enzyme called PI3-K, which was in turn driven by an environmental influence, macrophage-secreted IGF-1. Mice that were treated with BLZ945 plus a PI3-K or IGF-1 inhibitor benefited from significantly longer survival than control mice, the researchers showed.


Brain tumors subject to therapy can become resistant to it through interactions with their tumor microenvironment rather than because of anything intrinsic about the tumor itself, a new study in mice suggests.

The resistance mechanism outlined in the study involves a particular enzyme and can be overcome using other drugs that target this newly identified signaling pathway. Glioblastoma multiforme (GBM) is a common and aggressive type of adult brain tumor; current standard treatment only minimally prolongs survival.

Macrophages, types of white blood cell that ingest debris, are found in abundance in GMB tumors, and tend to express high levels of colony stimulating factor-1 (CSF-1).

Here, Daniela Quail et al. showed that inhibiting CSF-1 with a drug called BLZ945 caused tumor regression in mice; however, the majority of GBM tumors ultimately developed resistance to BLZ945, a phenomenon of interest as cancer drugs targeting CSF-1 are currently in clinical trials in multiple settings.

Further investigation revealed that GMB recurrence correlated with elevated activity of a tumor enzyme called PI3-K, which was in turn driven by an environmental influence, macrophage-secreted IGF-1. Mice that were treated with BLZ945 plus a PI3-K or IGF-1 inhibitor benefited from significantly longer survival than control mice, the researchers showed.

By implanting BLZ945-resistant tumors into naïve mice, Quail et al. demonstrated that GBM tumors use this this PI3-K/IGF-1 mechanism to manipulate the surrounding microenvironment to their advantage.

Thus, they say, tumors can also develop resistance through microenvironment-dependent mechanisms, independent of the tumor itself. Whether the findings will translate to a human model of glioma remains to be seen.



The above post is reprinted from materials provided by American Association for the Advancement of ScienceNote: Materials may be edited for content and length.

Disclaimer: DoveMed is not responsible for the adapted accuracy of news releases posted to DoveMed by contributing universities and institutions.

Primary Resource:

Quail, D. F., Bowman, R. L., Akkari, L., Quick, M. L., Schuhmacher, A. J., Huse, J. T., ... & Joyce, J. A. (2016). The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science352(6288), aad3018.

Reviewed and Approved by a member of the DoveMed Editorial Board
First uploaded: June 11, 2016
Last updated: June 11, 2016