Hebrew University of Jerusalem

Prostaglandin EI Inhibits Leukemia Stem Cells

ArticlePress release
Brain & Nerve
Current Medical News
+1
Contributed byMaulik P. Purohit MD MPHOct 01, 2017

Two drugs, already approved for safe use in people, may be able to improve therapy for chronic myeloid leukemia (CML), a blood cancer that affects myeloid cells, according to results from a University of Iowa study in mice.

CML is a relatively common cancer. The American Cancer Society estimates that in 2017 there will be about 8,950 new cases and about 1,080 people will die of the disease.

In its initial, chronic stage, CML is relatively easy to treat. Drugs called tyrosine kinase inhibitors (TKIs) are generally successful at controlling the cancer. However, patients need to continue the expensive treatment for their lifetime. In some cases, even with that treatment, the cancer can progress to a more advanced stage that is no longer controlled.

One reason for this, explains Hai-Hui (Howard) Xue, MD, PhD, UI professor of microbiology and immunology, is that there are two kinds of tumor cells -- bulk leukemia cells that can be killed by TKI drugs, and a subset of cells called leukemia stem cells, which are resistant to TKIs and to chemotherapy.

"A successful treatment is expected to kill the bulk leukemia cells and at the same time get rid of the leukemic stem cells. Potentially, that could lead to a cure," says Xue, who is senior author of the study published in the September issue of the journal Cell Stem Cell as the cover story.

With that goal in mind, Xue and his team joined forces with Chen Zhao, MD, PhD, UI assistant professor of pathology, and used their understanding of CML genetics to look for small molecules or drug compounds that might be able to eradicate the leukemia stem cells.

Focusing on two proteins known as transcription factors, the researchers showed that genetically removing the two transcription factors, Tcf1 and Lef1, in mice is sufficient to prevent leukemia stem cells from persisting. Importantly, this genetic alteration did not affect normal hematopoietic (blood) stem cells.

Next the researchers used an informatics method called connectivity maps to identify drugs or small molecules that can replicate the gene expression pattern that occurs when the two transcription factors are removed. This screening test identified a drug called prostaglandin E1 (PGE1).

The team tested a combination of PGE1 and the TKI drug called imatinib in a mouse model of CML. The mice lived longer than control mice; 30 percent lived longer than 80 days compared to mice treated with only imatinib, all of which died within 60 days.

The team also looked at a different mouse model of CML, where human CML cells were transplanted into an immunocompromised mouse. When the mice received no treatment or were treated with imatinib alone, the human leukemia stem cells propagated and grew to relatively large numbers. In contrast, when the animals were treated with a combination of imatinib and PGE1, those numbers were greatly reduced, and mice did not develop leukemia.

"The results are a pleasant surprise," says Xue who also is a member of Holden Comprehensive Cancer Center at the UI. "We do these kinds of genetic studies all the time -- looking at transcription factors and what they do. This is a good opportunity to connect what we do at the bench to something that could be useful clinically."

Investigating how the PGE1 works to suppress the leukemia stem cells, the team found that the effect relies on a critical interaction between PGE1 and its receptor EP4. They then tested the effect of a second drug molecule called misoprostol, which also interacts with EP4, and showed that misoprostol also has the ability to combine with TKI and significantly reduce the number of leukemia stem cells.

Both PGE1 and misoprostol are currently approved by the FDA for use in people. PGE1 is an injectable drug that is used to treat erectile dysfunction. Misoprostol is a pill that is used to treat ulcers.

"We would like to be able to test these compounds in a clinical trial," Xue says. "If we could show that the combination of TKI with PGE1, or misoprostol, can eliminate both the bulk tumor cells and the stem cells that keep the tumor going, that could potentially eliminate the cancer to the point where a patient would no longer need to depend on TKI."


Materials provided by University of Iowa Health CareNote: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

Fengyin Li, Bing He, Xiaoke Ma, Shuyang Yu, Rupali R. Bhave, Steven R. Lentz, Kai Tan, Monica L. Guzman, Chen Zhao, Hai-Hui Xue. (2017). Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1Cell Stem Cell. DOI: 10.1016/j.stem.2017.08.001

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!