A Need For Bananas? Dietary Potassium Regulates Calcification Of Arteries

A Need For Bananas? Dietary Potassium Regulates Calcification Of Arteries

ArticlePress release
Digestive Health
Heart & Vascular Health
+1
Contributed byMaulik P. Purohit MD MPHOct 08, 2017

Bananas and avocados -- foods that are rich in potassium -- may help protect against pathogenic vascular calcification, also known as hardening of the arteries.

University of Alabama at Birmingham researchers have shown, for the first time, that reduced dietary potassium promotes elevated aortic stiffness in a mouse model, as compared with normal-potassium-fed mice. Such arterial stiffness in humans is predictive of heart disease and death from heart disease, and it represents an important health problem for the nation as a whole.

The UAB researchers also found that increased dietary potassium levels lessened vascular calcification and aortic stiffness. Furthermore, they unraveled the molecular mechanism underlying the effects of low or high dietary potassium.

Such knowledge of how vascular smooth muscle cells in the arteries regulate vascular calcification emphasizes the need to consider dietary intake of potassium in the prevention of vascular complications of atherosclerosis. It also provides new targets for potential therapies to prevent or treat atherosclerotic vascular calcification and arterial stiffness.

A UAB team led by Yabing Chen, Ph.D., UAB professor of pathology and a Research Career Scientist at the Birmingham VA Medical Center, explored this mechanism of vascular disease three ways: living mice fed diets that varied in potassium, mouse artery cross-sections studied in culture medium with varying concentrations of potassium, and mouse vascular smooth muscle cells grown in culture medium.

Working from living mice down to molecular events in cells in culture, the UAB researchers determined a causative link between reduced dietary potassium and vascular calcification in atherosclerosis, as well as uncovered the underlying pathogenic mechanisms.

The animal work was carried out in the atherosclerosis-prone mouse model, the apoliprotein E-deficient mice, a standard model that are prone to cardiovascular disease when fed a high-fat diet. Using low, normal or high levels of dietary potassium -- 0.3 percent, 0.7 percent and 2.1 percent weight/weight, respectively, the UAB team found that the mice fed a low-potassium diet had a significant increase in vascular calcification. In contrast, the mice fed a high-potassium diet had markedly inhibited vascular calcification. Also, the low-potassium mice had increased stiffness of their aortas, and high-potassium mice had decreased stiffness, as indicated by the arterial stiffness indicator called pulse wave velocity, which is measured by echocardiography in live animals.

The different levels of dietary potassium were mirrored by different blood levels of potassium in the three groups of mice.

When researchers looked at arterial cross-sections in cultures that were exposed to three different concentrations of potassium, based on normal physiological levels of potassium in the blood, they found a direct effect for the potassium on arterial calcification within arterial rings. Arterial rings in low-potassium had markedly enhanced calcification, while high-potassium inhibited aortic calcification.

"The findings have important translational potential," said Paul Sanders, M.D., professor of nephrology in the UAB Department of Medicine and a co-author, "since they demonstrate the benefit of adequate potassium supplementation on prevention of vascular calcification in atherosclerosis-prone mice, and the adverse effect of low potassium intake."

Mechanistic details

In cell culture, low potassium levels in the culture media markedly enhanced calcification of vascular smooth muscle cells. Previous research by several labs including Chen's group has shown that calcification of vascular smooth muscle cells resembles the differentiation of bone cells, which leads to the transformation of smooth muscle cells into bone-like cells.

So the UAB researchers tested the effect of growing vascular smooth muscle cells in low-potassium cell culture. They found that the low-potassium conditions promoted the expression of several gene markers that are hallmarks of bone cells, but decreased the expression of vascular smooth muscle cell markers, suggesting the transformation of the vascular smooth muscle cells into bone-like cells under low-potassium conditions.

Mechanistically, they found that low-potassium elevated intracellular calcium in the vascular smooth muscle cells, via a potassium transport channel called the inward rectifier potassium channel. This was accompanied by activation of several known downstream mediators, including protein kinase C and the calcium-activated cAMP response element-binding protein, or CREB.

In turn, CREB activation increased autophagy -- the intracellular degradation system -- in the low-potassium cells. Using autophagy inhibitors, the researchers showed that blocking autophagy blocked calcification. Thus, autophagy plays an important role in mediating calcification of vascular smooth muscle cells induced by the low-potassium condition.

The roles of the CREB activation and autophagy signals were then tested in the mouse artery cross-section and living-mouse models, with low, normal or high levels of potassium in the media or diet. Results in both of those systems supported the vital role for potassium to regulate vascular calcification through calcium signaling, CREB and autophagy.

Besides Chen and Sanders, co-authors of the paper, "Dietary potassium regulates vascular calcification and arterial stiffness," published in JCI Insight, are Yong Sun, Chang Hyun Byon and Youfeng Yang, UAB Department of Pathology; Wayne E. Bradley, Louis J. Dell'Italia and Anupam Agarwal, UAB Department of Medicine; and Hui Wu, UAB Department of Pediatric Dentistry. Sanders, Agarwal and Chen are also members of the Research Department, Veterans Affairs Birmingham Medical Center.


Materials provided by University of Alabama at BirminghamNote: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

Yong Sun, Chang Hyun Byon, Youfeng Yang, Wayne E. Bradley, Louis J. Dell’Italia, Paul W. Sanders, Anupam Agarwal, Hui Wu, Yabing Chen. (2017). Dietary potassium regulates vascular calcification and arterial stiffnessJCI Insight. DOI: 10.1172/jci.insight.94920

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!