Into More Thin Air: Exploring The Adaptation Extremes Of Human High Altitude Sickness And Fitness

Into More Thin Air: Exploring The Adaptation Extremes Of Human High Altitude Sickness And Fitness

ArticlePress release
Brain & Nerve
Current Medical News
Contributed byMaulik P. Purohit MD MPHSep 22, 2017

Many research groups have recently explored human adaptation and successfully identified candidate genes to high altitude living among three major far-flung global populations: Tibetans, Ethiopians and Peruvians.

But few have simultaneously explored the other extreme -- maladaptation -- -in the form of chronic mountain sickness (CMS), also known as Monge's disease, which is characterized by the production of an excessive number of red blood cells.

Now, in the largest whole genome study of its kind, an international research team led by University of California San Diego's Chairman of Pediatrics, Dr. Gabriel Haddad, has expanded on their recent study of understanding both adaptation extremes in a Peruvian population. "CMS incidence is highest in Andeans (~18%), lesser in Tibetans (1-11%), and yet, completely absent from the Ethiopian populations, further mystifying this disease pathogenesis," said Haddad. "Therefore, a clear understanding of its pathophysiology would be beneficial to the large high-altitude populations at risk of developing this syndrome. It would also provide insights in understanding many disease pathophysiologies where hypoxia plays a major role, at sea level, e.g., stroke, cardiac ischemia, obstructive sleep apnea, sickle cell disease."

A total of 94 individuals equally divided into CMS and non-CMS subjects participated in the study. They hailed from Cerro de Pasco, one of the largest, high elevation settlements in the world (more than 50,000 people living at greater than 14,000 feet (4300 meters), high up in the Andes.

Next, using available genetic tools and a new custom algorithm, the researchers sifted through the genomes to identify and categorize all of the favored mutations from the Peruvians. Overall, they identified 11 regions containing 38 genes that were of statistical significance. Nine of these genes were also tested in hypoxia experiments to validate their functional role using the research lab model organism, the fruit fly Drosophila melanogaster.

"In this study, we present the results of an expanded whole genome sequence analysis of CMS and non-CMS subjects and identify additional candidate regions that are under positive selection," said Haddad. "Indeed, the larger sample size, the robust selection methods, and the use of a novel statistical test for prioritization all allowed us to uncover novel genes involved in HA adaptation. Additionally, using Drosophila as a model organism, we found that certain candidate genes, when downregulated in Drosophila, induced more tolerance to hypoxia than controls."

Intriguingly, the majority of the mutations were found in noncoding regions of the genome that may be playing an important regulatory role in finely tuning the levels of gene expression.

"We suspect that this molecular adaptation allows for more genetic flexibility, that plausibly regulates transcript abundance, adjusting with the physiological responses to environmental challenges such as hypoxia," said Haddad.

The results of the study will contribute significantly to the multi-factorial genetic understanding of high-altitude adaptation and the physiology of hypoxia. In addition, the researchers' new algorithm can be adapted to further the other studies trying to identify the genomic hallmarks of human adaptation.


Materials provided by Molecular Biology and Evolution (Oxford University Press)Note: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

Tsering Stobdan, Ali Akbari, Priti Azad, Dan Zhou, Orit Poulsen, Otto Appenzeller, Gustavo F Gonzales, Amalio Telenti, Emily H. M. Wong, Shubham Saini, Ewen F. Kirkness, J. Craig Venter, Vineet Bafna, Gabriel G. Haddad. (2017). New insights into the genetic basis of Monge's disease and adaptation to high-altitudeMolecular Biology and Evolution. DOI: 10.1093/molbev/msx239

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!