Blausen.com

Human Brain Clocks Exposed: Effects Of Circadian Clocks, Sleep Loss Vary Across Brain Regions, New Study Finds

Article
Brain & Nerve
Behavioral & Mental Health
+1
Contributed byKrish Tangella MD, MBAAug 22, 2016

Ever wondered what happens inside your brain when you stay awake for a day, a night and another day, before you finally go to sleep? In a new study published in the journalScience, a team of researchers from the University of Liege and the University of Surrey have scanned the brains of 33 participants across such a 2-day sleep deprivation period and following recovery sleep. Activity in several brain regions, and in particular subcortical areas, followed a 24-hour rhythmic (circadian) pattern the timing of which, surprisingly, varied across brain regions.

Other brain regions, in particular frontal brain areas, showed a reduction in activity with time awake followed by a return to pre-sleep-deprivation levels after recovery sleep. Some brain regions displayed a pattern which was a combination of a rhythmic pattern and a decline associated with time awake.

Even more surprising, the researchers discovered that these effects of sleep loss on brain activity were much more widespread when the participants performed a simple (reaction time) task compared to a more complex memory-reliant task.

In each participant 13 brain scans were obtained: 12 during the sleep deprivation period and one following recovery sleep. The data were aligned with the melatonin rhythm which is a hormonal marker of the human brain circadian pacemaker, i.e. a marker of brain time.

This variety in brain responses and the prominent circadian rhythm component shed new light on the complexity of the mechanisms by which the brain responds to sleep loss. It also shows that the time of day at which we scan the brain has a prominent effect on the picture we get.

Behavioural observations have long suggested that brain function is influenced by the duration of wakefulness and the biological time of day (circadian rhythmicity). During a period of sleep deprivation performance does not deteriorate linearly with time awake. It remains constant during the day, rapidly deteriorates during the biological night and then slightly improves the next day.

The current findings demonstrate that these two processes and this time course can also be detected at the level of brain responses as assessed by functional Magnetic Resonance Imaging (fmRI) which provides measures of brain activity. In addition they show that the relative contribution of sleep loss and time of day effects varies across brain regions.

Professor Derk-Jan Dijk from the University of Surrey said: "It is very gratifying to see directly at the level of fMRI-detected brain responses that circadian rhythmicity and lack of sleep both have such a profound influence on brain function.

"Our data may ultimately help us to better understand how the brain maintains performance during the day, why many symptoms in psychiatric and neurodegenerative conditions wax and wane, and why in the early morning after a night without sleep we struggle to maintain attention, whereas in the evening it is not an issue."

Vincenzo Muto from the University of Liege said: "Our data highlights the complex interaction between our biological clock and time spent awake at a regional brain level: extremely intriguing!"

Pierre Maquet from the University of Liege added: "These results suggest the fascinating hypothesis that brain function is continuously modulated by two factors that are both globally expressed but locally modulated : sleep pressure and circadian rhythmicity."



The above post is reprinted from materials provided by University of Surrey. The original item was written by Mr Peter La. Note: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the adapted accuracy of news releases posted to DoveMed by contributing universities and institutions.

Primary Resource:

  1. Muto, V., Jaspar, M., Meyer, C., Kussé, C., Chellappa, S. L., Degueldre, C., ... & Archer, S. N. (2016). Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science353(6300), 687-690.

Was this article helpful

On the Article

Krish Tangella MD, MBA picture
Approved by

Krish Tangella MD, MBA

Pathology, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!