Andy Murray

Honeybees Could Play A Role In Developing New Antibiotics

ArticlePress release
Current Medical News
Contributed byKrish Tangella MD, MBASep 15, 2017

An antimicrobial compound made by honeybees could become the basis for new antibiotics, according to new research at the University of Illinois at Chicago.

No new antibiotics have been discovered for more than 30 years, and some bacteria are becoming immune to the drugs used to treat or prevent infections. Antibiotic resistance, called one of the world's most pressing public health concerns by the Centers for Disease Control and Prevention, can mean illnesses that were once easily treatable are now potentially deadly.

Each year in the U.S., at least two million people become infected with bacteria that are resistant to antibiotics, and at least 23,000 people die each year as a direct result of these infections, according to the CDC. Many more people die from other conditions that were complicated by an antibiotic-resistant infection.

In a new study published in the journal Nature Structural & Molecular Biology, UIC researchers, led by co-investigators Alexander Mankin and Nora Vázquez-Laslop of the College of Pharmacy's Center for Biomolecular Sciences, explain how a derivative of the antibiotic apidaecin -- Api137 -- can block the production of proteins in potentially harmful bacteria.

Many antibiotics kill bacteria by targeting the ribosome, which makes all the proteins in the cell. Protein production can be halted by interfering with different stages of translation -- the process by which DNA is "translated" into protein molecules -- Mankin said. Api137 is the first known inhibitor of translation termination, he said.

Api137 is a natural product produced by bees, wasps or hornets. In nature, many organisms defend themselves from infection by making antibacterial peptides, or small proteins. The peptides can be used as antibiotics if "we understand how they work," said Tanja Florin, a UIC doctoral student who served as one of the lead authors on the paper.

"This project was a result of an excellent collaboration of our team," said Vázquez-Laslop, who worked with two research groups in Germany. "We can now harness the knowledge of how Api137 works in order to make new drugs that would kill bad bacteria using a similar mechanism of action."


Materials provided by University of Illinois at ChicagoNote: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

Tanja Florin, Cristina Maracci, Michael Graf, Prajwal Karki, Dorota Klepacki, Otto Berninghausen, Roland Beckmann, Nora Vázquez-Laslop, Daniel N Wilson, Marina V Rodnina, Alexander S Mankin. (2017). An antimicrobial peptide that inhibits translation by trapping release factors on the ribosomeNature Structural & Molecular Biology. DOI: 10.1038/nsmb.3439

Was this article helpful

On the Article

Krish Tangella MD, MBA picture
Approved by

Krish Tangella MD, MBA

Pathology, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!