A Tiny Device Offers Insights To How Cancer Spreads

A Tiny Device Offers Insights To How Cancer Spreads

ArticlePress release
Current Medical News
Cancer & Benign Tumors
Contributed byKrish Tangella MD, MBASep 25, 2017

As cancer grows, it evolves. Individual cells become more aggressive and break away to flow through the body and spread to distant areas.

What if there were a way to find those early aggressors? How are they different from the rest of the cells? And more importantly: Is there a way to stop them before they spread?

These questions drove a team of researchers at the University of Michigan Comprehensive Cancer Center and Michigan Engineering to develop a tiny device designed to solve these big questions.

"It's especially important to be able to capture those leader cells and understand their biology -- why are they so successful, why are they resistant to traditional chemotherapy and how can we target them selectively?" says study author Sofia Merajver, M.D., Ph.D., scientific director of the Breast Oncology Program at the University of Michigan Comprehensive Cancer Center.

"Microfluidic devices are helping us understand biology that was previously not accessible," she says.

The problem with existing microfluidic devices is that the cells don't last long within them. Devices typically lend themselves to brief experiments of several days. But the characteristics of cancer cells change over time.

"A lot of tumor processes like invasion and resistance don't happen overnight. Our goal was to track the long-term evolution of invasion," says lead study author Koh Meng Aw Yong, Ph.D., a postdoctoral fellow in Merajver's lab. "We cannot look at just a certain time point, like in a three-day experiment. That might not represent what's happening in the body over time."

So the team developed a new fluidic device to allow them to cultivate cells for longer periods of time. Researchers found the device was stable up to at least three weeks in culture. Their results are published in Scientific Reports.

The cells look like a thin milky line in a chamber that's smaller than a pillbox. They are actually suspended in three dimensions, unlike typical fluidic devices that capture cells in two dimensions. It allows researchers to feed the cancer cells into the device with very minimal disturbance or change to the cells.

The device consists of three tiny molded channels through which cells flow. The cells are fed into one channel. Fluid flows through a parallel channel to provide pressure and flow without disturbing the culture. The flow of fluid through the outer channel mimics what happens with the body's capillaries.

"These forces are important and incorporate everything into one system," Aw Kong says.

The researchers tested the device with two lines of metastatic prostate cancer cells. They were able to isolate the leader cells -- those cells that first broke off and would be traveling to distant organs.

After two weeks, they found that the cells from one line were twice as invasive as the other cell line. But by three weeks, that difference was gone, suggesting that the invasive potential of cells may change over time.

The hope is that researchers can find differences in the molecular signature between cells that invade and those that don't. Then, they would target the molecular underpinning with therapies to prevent cancer from invading -- essentially keeping the cancer confined and preventing metastasis.

"The device also holds potential to be used to test drugs and detect when cancer becomes resistant. This would allow oncologists to know sooner if a therapy is not working, and perhaps switch the patient to another option," says senior study author Jianping Fu, Ph.D., associate professor of mechanical engineering at the University of Michigan. "Of course, more research is needed to explore this possibility in the future."

"We think we can grow this while the patient is undergoing treatment or monitoring. The device would be able to show us if the cells become more aggressive before a traditional imaging test would detect anything," Aw Yong says.

Researchers next want to extend the work to triple-negative breast cancer, a particularly aggressive form of the disease. Once the leader cells are identified, they will also begin looking at whether these cells have different genetic or molecular markers than the less-aggressive cells.


Materials provided by Michigan Medicine - University of MichiganNote: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

Koh Meng Aw Yong, Zida Li, Sofia D. Merajver, Jianping Fu. (2017). Tracking the tumor invasion front using long-term fluidic tumoroid cultureScientific Reports. DOI: 10.1038/s41598-017-10874-1

Was this article helpful

On the Article

Krish Tangella MD, MBA picture
Approved by

Krish Tangella MD, MBA

Pathology, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!