CDC/ Dr. James Hanson

'Master Regulator' Involved In Infant Lung Damage Identified

ArticlePress release
Current Medical News
Contributed byKrish Tangella MD, MBAOct 29, 2017

Researchers at Drexel University have revealed that inhibiting the micro-RNA miR-34a significantly reduces bronchopulmonary dysplasia (BPD) in mice. BPD is a chronic lung disease that affects up to 15,000 premature infants every year in the United States. The study, published in Nature Communications, suggests that targeting this "master regulator" (miR-34a) could treat this complex disorder.

BPD develops when premature infants with underdeveloped lungs need help to breathe and are treated with supplemental oxygen. Though the oxygen is life-saving, it often leads to inflammation and injury in the lungs, which can cause life-long breathing problems.

Vineet Bhandari, MD, a faculty member in the Department of Pediatrics at Drexel University's College of Medicine and chief of Neonatal Medicine at St. Christopher's Hospital for Children, suspected that the microRNA miR-34a could play a role in BPD. Previous studies have suggested that the microRNA molecule controls pathways related to four major aspects of the disease: inflammation, vascular development, cell death and cell proliferation.

To investigate the theory, Bhandari and colleagues first tested a cohort of lung secretion samples taken from premature infants. After testing the samples, the researchers found that miR-34a was significantly increased only in the samples taken from babies who went on to develop BPD.

The researchers also tested lung tissue collected postmortem from babies who had died at different ages from lung disease. Again, they found that this particular microRNA was expressed in the samples and also its downstream targets (the production of proteins) were suppressed in the ones with BPD.

Next, the researchers found that levels of miR-34a levels were increased in the lungs of neonatal mice exposed to high levels of oxygen. Bhandari and his team then blocked the microRNA by repressing gene expression, as well as pharmacologically, by injecting the mouse models with the downstream target of the miR-34a, angiopoietin-1. Blocking miR-34a or injecting angiopoietin-1 in the mouse models improved their lung architecture by up to 90 percent, compared to controls.

"People have been looking to find a master regulator involved in BPD, and many thought it could not be found, because it is such a complicated disease," Bhandari said. "But we have comprehensively proven that miR-34a controls at least four different pathways involved in BPD."

The researchers are pinpointing new targets for treating BPD and moving toward clinical trials to test new treatments for the disease.


Materials provided by Drexel UniversityNote: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

Mansoor Syed, Pragnya Das, Aishwarya Pawar, Zubair H. Aghai, Anu Kaskinen, Zhen W. Zhuang, Namasivayam Ambalavanan, Gloria Pryhuber, Sture Andersson, Vineet Bhandari. (2017). Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungsNature Communications. DOI: 10.1038/s41467-017-01349-y

Was this article helpful

On the Article

Krish Tangella MD, MBA picture
Approved by

Krish Tangella MD, MBA

Pathology, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!