Wyeth Lynch, Iowa State University

Discovery Could Lead To Treatment To Better Regulate Insulin

Article
Current Medical News
Diabetes Care
Contributed byMaulik P. Purohit MD MPHAug 01, 2016

Medication can help trigger the enzyme that kick starts insulin production in the body, but the drugs don't always work for those who are obese or diabetic, and most need to regulate their glucose and insulin levels. That's why a recent discovery made by Rudy Valentine and a team of researchers holds so much promise.

The team has spent years studying the enzyme AMP-activated protein kinase or AMPK -- a main energy sensor in the body. Valentine, an assistant professor of kinesiology at Iowa State University, says AMPK is reduced in obese and diabetics, putting them at risk for metabolic complications, such as stroke, heart disease and some forms of cancer.

Researchers know a lot about how to activate this enzyme, but are working to understand why AMPK is being reduced, he said. By examining the molecular and cellular process, Valentine and his colleagues at Boston University School of Medicine and Harvard Medical School came up with another piece of the puzzle. They found the protein PKD1 may limit AMPK's activity, which leads to impaired insulin signaling in the muscle, a hallmark of diabetes, Valentine said. The results were published earlier this year in The Journal of Biological Chemistry.

"It's a pretty technical process," he said. "There are probably a lot of different molecules that are also involved in this process, but this is definitely one of the mechanisms by which the molecule AMPK is downregulated."

One way to help understand the process is to think of AMPK as a commuter train or bus you take to and from work. PKD1 is like a construction project blocking the exits from the road or tracks and backing up traffic. In your body, PKD1 slows the cells that remove glucose from the bloodstream causing a "back up" or increase of blood glucose, which has significant consequences. Valentine says it's also similar to trying to accelerate with your foot on the brake and PKD1 is the brake.

Once researchers identified PKD1 as a potential problem, they took two different approaches -- one using medication and the other involved gene silencing to inhibit PKD1 -- to determine if it's possible to restrain or prevent the enzyme from limiting AMPK. Valentine says they're encouraged by the fact that lowering PKD1 by both approaches effectively restored AMPK activity and insulin signaling. The next step is to determine if existing drugs or modifying certain drugs may be an effective treatment option.

Exercise may also have potential

As an exercise physiologist, Valentine is interested in the impact of physical activity and nutrition in this process. Researchers know that when AMPK is activated it helps the body realize the metabolic benefits of exercise, which can improve insulin sensitivity. Valentine says diet may also play a role.

"We want to know if there are lifestyle things people can do such as nutraceuticals and certain foods that can inhibit this enzyme and lead to more activation of AMPK and improve insulin sensitivity," Valentine said.

Exercise may not be a practical solution for people with physical impairments or other health issues. However, Valentine says the work may help identify areas they can target with other types of therapy.


The above post is reprinted from materials provided by Iowa State UniversityNote: Materials may be edited for content and length.

Disclaimer: DoveMed is not responsible for the adapted accuracy of news releases posted to DoveMed by contributing universities and institutions.

Primary Resource:

Kimberly A. Coughlan, Rudy J. Valentine, Bella S. Sudit, Katherine Allen, Yossi Dagon, Barbara B. Kahn, Neil B. Ruderman, Asish K. Saha. PKD1 Inhibits AMPKα2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle CellsJournal of Biological Chemistry, 2016; 291 (11): 5664 DOI:10.1074/jbc.M115.696849

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!