Kara Manke, Duke University

Blood Tests: Sound Waves Separate Biological Nanoparticles For 'Liquid Biopsies'

ArticlePress release
Current Medical News
Contributed byMaulik P. Purohit MD MPHSep 19, 2017

A prototype device developed by an international team of engineers can sift exceedingly tiny particles from blood samples without having to send samples off to a lab. The device, which combines acoustic cell-sorting and microfluidic technologies, could be a boon to both scientific research and medical applications.

The system is optimized to sort out "exosomes," biological nanoparticles released from every type of cell in the body. Thought to play a large role in cell-to-cell communication and disease transmission, they have been objects of scientific curiosity since their discovery three decades ago.

The miniscule size of exosomes, however, makes them difficult to study and challenging to separate from their native biological fluids. Current practices involve spinning samples in a centrifuge for several hours or even days, often damaging the exosomes by subjecting them to extremely high gravitational forces. Even then, the procedure only captures a small fraction of the nanoparticles present in the biological fluid.

In a paper appearing the week of Sept. 18 in the Proceedings of the National Academy of Sciences, researchers from Duke University, the University of Pittsburgh and Magee Womens Research Institute, the Massachusetts Institute of Technology and Nanyang Technological University Singapore, demonstrate a better method based on "acoustofluidics," a combination of acoustics and microfluidics.

The prototype device provides a gentle, automated, point-of-care system that allows single-step, on-chip isolation of exosomes from whole biological fluids with a high rate of purity and yield.

The results could help researchers and clinicians learn more about exosomes and form the foundation for diagnostic or therapeutic devices. The device may enable diagnosis and monitoring of many conditions with a simple blood draw and 'liquid biopsy,' including cancer, concussions and diseases affecting the brain, kidney, liver and placenta.

"Exosomes have significant potential in medical diagnosis and treatment, but the current technologies for exosome isolation suffer from drawbacks such as long turnaround time, inconsistency, low yield, contamination and uncertain exosome integrity," said Tony Jun Huang, professor of mechanical engineering and materials science at Duke. "This work offers a new technique that can address these issues. We want to make extracting high-quality exosomes as simple as pushing a button and getting the desired samples within 10 minutes."

"The capability of this method to separate exosomes without altering their biological or physical characteristics potentially offers new pathways to assess human health as well as the onset and progression of diseases," said Subra Suresh, co-corresponding author of the paper and president-designate of Nanyang Technological University Singapore, the 21st Century Professor of Biomechanics in Medicine at the University of Pittsburgh Medical School, and former president of Carnegie Mellon University.

The prototype device built by Huang and his colleagues creates a high-frequency sound wave traveling at an angle to liquid flowing down a tiny tube. By carefully tailoring the angle and frequency of the sound wave to the length of the channel and size of the particles, they can push any particle bigger than 1,000 nanometers into a separate channel.

This removes elements of blood such as white blood cells, red blood cells and platelets. The fluid then goes through a second chamber, where the same force is used to filter out everything smaller than 130 nanometers, which is about the size of most exosomes and 500 times smaller than the thickness of the human hair.

The dual-stage technique showed the ability to separate more than 80 percent of exosomes present with a purity of 98 percent, compared to current methods that capture only 5 to 40 percent of exosomes.

"The new device can eliminate all blood cells and platelets first before efficiently separating extracellular vesicles such as exosomes," explained Ming Dao, director of the Nanomechanics Laboratory at MIT. "This new generation of integrated device design makes it possible for centrifugation-free sorting of different blood components, which can drastically reduce the cost and processing time involved with liquid biopsy assays."

"This will add a new dimension to research into 'liquid biopsies' and facilitate the clinical use of extracellular vesicles to inform the physiology and health of organs that are hard to access, such as the placenta during human pregnancy," said Yoel Sadovsky, director of the Magee-Womens Research Institute at the University of Pittsburgh. "While using exosomes for these purposes is not yet proven, that is the promise of our research."


Materials provided by Duke UniversityNote: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

Mengxi Wu, Yingshi Ouyang, Zeyu Wang, Rui Zhang, Po-Hsun Huang, Chuyi Chen, Hui Li, Peng Li, David Quinn, Ming Dao, Subra Suresh, Yoel Sadovsky, Tony Jun Huang. (2017). Isolation of exosomes from whole blood by integrating acoustics and microfluidicsProceedings of the National Academy of Sciences. DOI: 10.1073/pnas.1709210114

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!