BruceBlaus

Biology Of Childhood Brain Tumor Subtypes Offers Clues To Precision Treatments

ArticlePress release
Brain & Nerve
Current Medical News
Contributed byMaulik P. Purohit MD MPHOct 18, 2017

Researchers investigating pediatric low-grade gliomas (PLGG), the most common type of brain tumor in children, have discovered key biological differences in how mutated genes combine with other genes to drive this childhood cancer. By shedding light on subtle distinctions in tumor biology, these findings offer clues to designing more effective anticancer treatments to precisely target tumors in individual patients.

"Carefully defining the molecular landscape of these tumor subtypes may guide us in pediatric precision medicine, to better treat children with brain tumors," said Payal Jain, PhD, a postdoctoral researcher at Children's Hospital of Philadelphia (CHOP).

Jain, a former graduate student in the Perelman School of Medicine at the University of Pennsylvania, is the first author of two recent PLGG studies, with colleagues from CHOP, Penn and other institutions.

The first study, published Aug. 14 in Oncogene, was co-led by Adam C. Resnick, PhD, co-director of the CHOP's Center for Data Driven Discovery in Biomedicine (D3b), and Angela J. Waanders, MD, MPH, director of clinical research for D3b along with senior author Phillip B. Storm, MD, Division Chief of Neurosurgery at CHOP and co-director of D3b. Neuro-oncology researchers Resnick and Waanders also were co-senior authors of a second study, published Sept. 15 in Oncotarget.

Both papers analyzed members of the RAF gene family that play key roles in driving cancer. Two related genes, CRAF and BRAF, express their respective proteins, CRAF and BRAF, which are signaling proteins called kinases. A mutation in either gene causes it to combine with a partner gene to express an abnormal fusion protein that acts along a cellular growth pathway to result in cancer.

In the Oncogene study, the research team found key distinctions in how these mutated genes give rise to PLGGs, a varied group of cancers that collectively account for the most common brain tumor in children. Although PLGGs are often slow-growing, they may disrupt hormones and lead to blindness or coma, and can occur in locations where they can't be surgically removed.

Although BRAF gene fusions were well known to be involved in PLGGs, the study team found important differences in a related gene, CRAF, in which mutations can also lead to this type of glioma. One crucial distinction is that CRAF-fusions may not respond as well as BRAF-fusions to anticancer drugs called RAF inhibitors.

Part of the reason for the difference in drug response, say the authors, is that the fusion partner -- the non-kinase gene that BRAF or CRAF combines with -- alters the tumor's response. "We showed for the first time that the non-kinase fusion partner has functional significance -- affecting how the gene fusion-driven tumor responds to therapy," said Waanders, who added, "This means that we need to carefully classify these tumors to better predict whether a patient is likely to respond to RAF-inhibitor therapy."

The study in Oncotarget, by revealing biological mechanisms by which RAF-fusion tumors develop drug resistance, suggests a possible solution: using a combination of drugs to inhibit downstream signals along two cancer-driving pathways, thus bypassing the difference in how RAF inhibitors succeed against CRAF-fusions compared to BRAF-fusions.

"Parsing the molecular details of tumor subtypes and resistance mechanism allows us to better define the therapeutic landscape as we pursue translational research," said Resnick. "Large-scale clinical sequencing and molecular profiling can better inform collaborative programs such as the National Cancer Institute-Children's Oncology Group Pediatric MATCH clinical trials and the Pacific Neuro-Oncology Consortium. Our findings in these new studies will advance our clinical efforts to develop more effective, personalized treatments for children."

Storm, who performs surgery on children with brain tumors, added that, "Better understanding of tumor characteristics, as we found in this research, will help guide our surgical planning and clinical decisions for patients with PLGGs in this current era of target-centric clinical trials and personalized medicine."


Materials provided by Children's Hospital of PhiladelphiaNote: Content may be edited for style and length.

Disclaimer: DoveMed is not responsible for the accuracy of the adapted version of news releases posted to DoveMed by contributing universities and institutions.

References:

P Jain, T M Fierst, H J Han, T E Smith, A Vakil, P J Storm, A C Resnick, A J Waanders. (2017). CRAF gene fusions in pediatric low-grade gliomas define a distinct drug response based on dimerization profilesOncogene. DOI: 10.1038/onc.2017.276

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!