I. Sergin

Atherosclerosis Is Alzheimer's Disease Of Blood Vessels, Study Suggests

Article
Brain & Nerve
Vein & Vascular Health
+2
Contributed byMaulik P. Purohit MD MPHApr 18, 2016

In atherosclerosis, plaque builds up on the inner walls of arteries that deliver blood to the body. Studying mice and tissue samples from the arteries of patients, researchers at Washington University School of Medicine in St. Louis suggest this accumulation is driven, at least in part, by processes similar to the plaque formation implicated in brain diseases such as Alzheimer's and Parkinson's.

The study is published in the journal Science Signaling.

A look behind the scenes in the process of plaque accumulating in arteries, the new study is the first to show that another buildup is taking place. Immune cells attempting to counteract plaque formation begin to accumulate misshapen proteins. This buildup of protein junk inside the cells interferes with their ability to do their jobs.

Protein buildup is widely studied in the brain -- accumulation of proteins such as amyloid beta and tau are hallmarks of Alzheimer's, Parkinson's and other degenerative neurological disorders. But until now, the process of misshapen protein buildup within cells has not been implicated in atherosclerosis.

"In an attempt to fix the damage characteristic of atherosclerosis, immune cells called macrophages go into the lining of the arteries," said senior author Babak Razani, MD, PhD, assistant professor of medicine. "The macrophage is like a firefighter going into a burning building. But in this case, the firefighter is overcome by the conditions. So another firefighter goes in to save the first and is likewise overcome. And another goes in, and the process continues to build on itself and worsen."

The researchers showed that this protein buildup inside macrophages results from problems with the waste-disposal functions of the cell. They identified a protein called p62 that is responsible for sequestering waste and delivering it to cellular incinerators called lysosomes. To mimic atherosclerosis, the researchers exposed the cells to types of fats known to lead to the condition. The researchers noted that during atherosclerosis, the macrophages' incinerators become dysfunctional. And when cells stop being able to dispose of waste, p62 builds up. In a surprise finding, when p62 is missing and no longer gathers the waste in one place, atherosclerosis in mice becomes even worse.

Razani and his colleagues, including the study's first author, Ismail Sergin, PhD, a research assistant, also found these protein aggregates and high amounts of p62 in atherosclerotic plaque samples taken from patients, suggesting these processes are at work in people with plaque building up in the arteries.

"That p62 sequesters waste in brain cells was known, and its buildup is a marker for a dysfunctional waste-disposal system," Razani said. "But this is the first evidence that its function in macrophages is playing a role in atherosclerosis."

The study demonstrates that p62's role in gathering up the misfolded proteins is protective against atherosclerosis, even if the cell can't actually dispose of the waste it gathers.

"If p62 is missing, the proteins don't aggregate," Razani said. "It's tempting to think this might be good for the cell, but we showed this is actually worse. It causes more damage than if the waste were corralled into a large 'trash bin.' You can imagine a situation where lots of trash is being generated and see that it would be better to keep it all in one place, rather than have it strewn across the floor. You might have difficulty removing the trash to the dumpster, but at least it's contained."

In atherosclerosis, and perhaps in the brain disorders characterized by protein accumulation, such evidence suggests it would be better to focus on ways to fix the cells' waste-disposal system for getting rid of the large protein aggregates, rather than on ways to stop the aggregates from forming.



The above post is reprinted from materials provided by Washington University School of MedicineNote: Materials may be edited for content and length.

Disclaimer: DoveMed is not responsible for the adapted accuracy of news releases posted to DoveMed by contributing universities and institutions.

Primary Resource:

I. Sergin, S. Bhattacharya, R. Emanuel, E. Esen, C. J. Stokes, T. D. Evans, B. Arif, J. A. Curci, B. Razani. Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosisScience Signaling, 2016; 9 (409): ra2 DOI:10.1126/scisignal.aad5614

Was this article helpful

On the Article

Maulik P. Purohit MD MPH picture
Approved by

Maulik P. Purohit MD MPH

Assistant Medical Director, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!