BurnAway

ALS Protein Dynamics Highlight Delicate Balance Between Self-Association And Aggregation

Article
Brain & Nerve
Health & Wellness
+1
Contributed byKrish Tangella MD, MBAJan 30, 2016

The ALS-related protein TDP-43 takes the first steps toward pathologic aggregation as part of its normal function, according to a new study publishing in the Open Access journal PLOS Biology on Jan. 6, 2016. The study, by Liangzhong Lim, Jianxing Song, and colleagues at the National University of Singapore, supports the emerging idea that protein aggregation in neurologic disease may be an exaggeration of the normal functions of the aggregating proteins.

Cytoplasmic aggregates of normal TDP-43 are found in almost all forms of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting motor neurons, as well as in many cases of frontotemporal dementia (FTD). TDP-43 aggregation has been observed in ~97% of ALS and ~45% of FTD patients. It has also been implicated in a range of other neurodegenerative disorders, including, recently, Alzheimer's disease.

Study of the protein's biophysical properties, including aggregation dynamics, has been hampered by its strong propensity to aggregate, a problem the authors recently overcame by reducing salt concentrations in vitro. Here, they used a variety of spectroscopic and microscopic techniques to characterize in detail the structure of the C-terminal prion-like domain of TDP-43, and how the protein forms dynamic oligomers through interactions of the domain on separate protein molecules or by interacting with nucleic acid. While mutations of TDP-43 are a rare cause of ALS, this prion-like domain hosts most of TDP-43's ALS-causing mutations. The authors showed that these mutations increase assembly and decrease disassembly of oligomers, tilting the balance toward aggregation into amyloid fibrils. The authors also discovered that a region of the protein that has previously been found to be necessary for toxicity promotes its association with membranes, which may increase aggregation propensity.

These results further highlight the delicate balance between normal function and pathology for aggregation-prone proteins such as TDP-43, and may help explain how aggregates of the non-mutated protein form in ALS. The authors also suggest that decreasing TDP-43's membrane-association potential "may represent a promising therapeutic strategy to treat neurodegenerative diseases."


The above post is reprinted from materials provided by PLOSNote: Materials may be edited for content and length.

Disclaimer: DoveMed is not responsible for the adapted accuracy of news releases posted to DoveMed by contributing universities and institutions.

Primary Resource:

Lim, L., Wei, Y., Lu, Y., & Song, J. (2016). ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43. PLoS Biol14(1), e1002338.

Was this article helpful

On the Article

Krish Tangella MD, MBA picture
Approved by

Krish Tangella MD, MBA

Pathology, Medical Editorial Board, DoveMed Team

0 Comments

Please log in to post a comment.

Related Articles

Test Your Knowledge

Asked by users

Related Centers

Loading

Related Specialties

Loading card

Related Physicians

Related Procedures

Related Resources

Join DoveHubs

and connect with fellow professionals

Related Directories

Who we are

At DoveMed, our utmost priority is your well-being. We are an online medical resource dedicated to providing you with accurate and up-to-date information on a wide range of medical topics. But we're more than just an information hub - we genuinely care about your health journey. That's why we offer a variety of products tailored for both healthcare consumers and professionals, because we believe in empowering everyone involved in the care process.
Our mission is to create a user-friendly healthcare technology portal that helps you make better decisions about your overall health and well-being. We understand that navigating the complexities of healthcare can be overwhelming, so we strive to be a reliable and compassionate companion on your path to wellness.
As an impartial and trusted online resource, we connect healthcare seekers, physicians, and hospitals in a marketplace that promotes a higher quality, easy-to-use healthcare experience. You can trust that our content is unbiased and impartial, as it is trusted by physicians, researchers, and university professors around the globe. Importantly, we are not influenced or owned by any pharmaceutical, medical, or media companies. At DoveMed, we are a group of passionate individuals who deeply care about improving health and wellness for people everywhere. Your well-being is at the heart of everything we do.

© 2023 DoveMed. All rights reserved. It is not the intention of DoveMed to provide specific medical advice. DoveMed urges its users to consult a qualified healthcare professional for diagnosis and answers to their personal medical questions. Always call 911 (or your local emergency number) if you have a medical emergency!